
RETROSPECTIVE: 

The DASH Prototype: Implementation and Performance 

Daniel E. Lenoski James l? Laudon 

Silicon Graphics 
lenoski@sgi.com 

ZSP Corporation 
laudon@zsp.com 

ur paper entitled “The DASH Prototype: 
Implementation and Performance” was given at 
the 19th ISCA in Gold Coast, Australia in May of 
1992. This paper outlined our implementation 
experience and initial performance details of 
DASH, the first hardware implementation of the 
ccNUMA architecture. DASH was a large multi- 
faceted research project at Stanford University led 
by John Hennessy, Anoop Gupta, Monica Lam, 
and Mark Horowitz. The overall goal of DASH 
was to break the scalability barrier of bus-based 
SMP machines and provide the massive parallel- 
ism of distributed memory while maintaining the 
shared-memory paradigm. While there had been 
previous switch-based SMPs built in the early 
1980s (e.g., the Cray X-Ml’, Univ. of Illinois Cedar, 
BBN TC-1000, and IBM RP3), DASH added hard- 
ware support for global cache coherence. Hard- 
ware cache coherence improved processor 
performance and removed the burden of coher- 
ence from the user or compiler. During the late 
1980’s our group was not alone, there were efforts 
at MIT (Alewife and J-Machine), University of Wis- 
consin (Multicube), Encore Computer (Gigamax), 
Kendall Square Research, and the IEEE Scalable 
Coherent Interface (SCI) standards effort, but ours 
was the first to build a hardware implementation 
of this new class of machine. 

The high-level structure of DASH was a collec- 
tion of nodes, each including one or more proces- 
sors and a portion of the global memory, connected 
by a scalable interconnect (a 2-D mesh). Directory- 
based coherence, originally proposed by Censier 
and Feautrier in the late 197Os, was employed since 
it removed the need for the global bus found in 
snoopy systems. While the original directory 
schemes used a central memory/directory, moving 
to a distributed organization scaled memory band- 
width naturally with the number of processors. 

With this fundamental system structure in mind, 
and previous studies showing the potential of dis- 
tributed-directories (see the Agarwal/Hennessy 
paper on directories in this collection), work began 
on the DASH prototype. 

DASH Prototype Goals and Timeline 

Scaling the cache-coherent SMP model to hun- 
dreds of processors raised many questions in the 
area of processor and system architecture, operat- 
ing systems, compilers, programming languages, 
and parallel applications. We chose to build an 
actual hardware prototype of the architecture to 
address these questions as well as to: 

. Understand the hardware complexities of actu- 
ally building this type of machine. 

l Provide more insight into the performance 
attributes of a real ccNUMA machine. 

l Allow a comparison of real applications’ com- 
plexities and performance (not simply small 
simulated kernels) among highly parallel 
shared-memory programs and their message- 
passing counterparts. 

The difficulty of implementing a distributed 
directory protocol was of serious concern since it 
amounts to replacing the software controlled net- 
work interfaces on message-passing machines 
with hardware control for sending network mes- 
sages to fetch remote memory and maintain cache 
coherence. At the time, it wasn’t clear if this hard- 
ware complexity was tractable, and even if it was, 
would the performance of a ccNUMA be competi- 
tive with message-passing systems? 

We began detailed architecture work on the 
system in fall of 1988. Early on, we made a choice 
to leverage an existing SMP system as our base 

80 



node because these machines provide the neces- 
sary hooks for controlling the processor caches 
from their bus interfaces. We were anxious to uti- 
lize a RISC-based SMP, and the recently 
announced SGI 4D/240 series was the only such 
machine on the market at the time. This choice 
turned out to be very fortuitous, since utilizing an 
existing system allowed us to leverage much of the 
system hardware and software and concentrate 
our efforts on the unique ccNUMA hardware and 
software. 

Initial power-on of the prototype system was 
in the Fall of 1990 and a 16 processor system was 
stable in the Spring of 1991. We then started work 
on a larger 64 processor system, which resulted in 
a stable 48 processor prototype in the Spring of 
1992. Nagging problems with our ribbon-cabled 
mesh links prevented us from reaching the goal of 
64 processors in a single system (a 4x4 mesh of 4 
processor nodes), but we were able to learn much 
from the 48 processor prototype. 

Innovations in DASH 

During the architecture phase of the project, 
our focus was on the coherence protocol and mech- 
anisms that would minimize memory latency and 
maximize memory bandwidth. In addition, we 
realized that hiding memory latency would also be 
key since the distributed structure of a large 
ccNUMA would invariably lead to longer memory 
latency. Likewise, support for large-scale parallel- 
ism demanded that we pay attention to synchroni- 
zation and inter-processor communication. Being 
one of the first to tackle these problems in the con- 
text of a ccNUMA machine, these goals led to 
many innovative solutions. These included: 

Software-controlled non-binding cache line 
prefetch to hide latency and increase memory 
pipelining. 

Release-consistency support with fence/mem- 
ory barriers to help hide store latency. 

Queue-based test-and-set locks to allow efficient 
contended spin-locks. 

Fetch&Inc and Fetch&Dec (borrowed from the 
NYU Ultracomputer, but without combining) 
for support of efficient barrier synchronization 
and distributed queues. 

Update coherence and deliver instructions 
which provide low latency inter-processor word 
and cache line communication respectively. 

The actual hardware implementation phase 
also demanded innovative solutions such as: 

An efficient “forwarding” coherence protocol 
which minimized latency for accessing dirty 
data and writing to shared cache lines. 

Support for both invalidate and update coher- 
ence within the same directory protocol. 

Separate request and reply paths that prevented 
dead-lock on the normal memory requests 
together with retry mechanisms that handled 
race conditions in the distributed directory pro- 
tocol. 

A high-bandwidth DRAM directory access path 
which performed read-modify-write cycles 
under the shadow of the main memory’s fetch of 
X-byte memory blocks. 

One of the first lock-up-free caches that imple- 
mented a remote access cache to track outstand- 
ing memory references and supplement the 
processor caches with features such as prefetch. 

Lessons Learned 

As one would expect, building and using the 
DASH prototype led to many new insights and les- 
sons that were both positive and negative. The 
most positive result was that it was feasible to 
build a ccNUMA machine and to achieve good 
performance on highly parallel shared-memory 
applications. Furthermore, by analyzing the logic 
in the directory and network interface, the proto- 
type demonstrated that adding hardware cache 
coherence added only 10% additional hardware 
over a non-coherent MIT’ system structure. 
Another lesson was that with close attention, it 
was possible to keep remote-to-local memory 
latency to within a 3 to 1 ratio. Several features 
included in the prototype proved very successful. 
Operations such as prefetch proved to be very 
powerful in hiding memory latency and improv- 
ing the pipelining of memory operations. 
Fetch&Op performed at memory also greatly 
reduced the overhead of barrier-type synchroniza- 
tion by reducing the serialization time for atomic 
counter operations. 

Other features that did not yield as much per- 
formance improvements as expected were queue- 
based locks and update and deliver operations. 
While these operations could greatly aid in specific 
low-level communication, the overhead of general 
communication associated with inter-processor 

81 



data sharing tended to swamp out the incremental 
enhancements that these operations provided. This 
was especially true on the prototype hardware 
where our remote access cache was as close as we 
could get the data to the processor (thus reducing 
latency by no more than a factor of 3). 

Another somewhat unexpected result was the 
negative impact of using a bus-connected inter- 
node interface. Since memory operations needed 
to cross the processor’s local bus twice and mem- 
ory home’s bus once, the resulting memory band- 
width when all processors are accessing remote 
memory was no better than one-third that of local 
memory. In fact, DASH’s bus-bandwidth was a 
greater limit on global remote memory bandwidth 
than network bisection bandwidth. While not 
inherent to ccNUMA systems, this issue illustrated 
the limitations of simply extending a bus-based 
SMP with a ccNUMA network interface card. 

The advantages of leveraging an existing SMP 
was also one of the indirect, but very positive, les- 
sons from the DASH project. Using an existing 
SMP allowed a small university team to focus their 
attention on the important task of architecting and 
designing the hardware necessary to implement a 
ccNUMA machine. In addition, the choice of the 
SGI 4D/240 as the base node helped in the quick 
development of DASH, as its modest level of inte- 
gration (by today’s standards) allowed us to work 
primarily at the board level with PALS and FPGAs. 
Working at this level of integration reduced both 
design and debug time. There were some compro- 
mises due to leveraging an existing machine, but it 
reduced the time from concept to running real 
applications under Unix to less than 2.5 years. This 
increased the impact of the actual DASH hardware 
and helped validate the feasibility of the ccNUMA 
architecture. 

Conclusions 

The impact of the DASH project has been felt 
both in the academia and industry. Scalable 
shared-memory multiprocessors continue to be a 

hot topic of research. DASH helped validate the 
viability of the ccNUMA approach and provide a 
baseline to evaluate improvements in coherence 
protocols, scalable directory storage, and alterna- 
tive system architectures such as COMA. ccNUMA 
systems have now been commercialized by a num- 
ber of vendors including HP/Convex, Silicon 
Graphics, Sequent, HaL, and Data General. The 
DASH prototype helped pave the way for these 
commercial developments by detailing many of 
the fundamental design problems with ccNUMA 
machines and demonstrating that the shared- 
memory paradigm could be scaled and realize 
both good performance and good cost-perfor- 
mance. 

Building the DASH prototype would never 
have been possible without the hard work of a 
number of individuals. These included our co- 
authors: Truman Joe, David Nakahira, Luis 
Stevens, Anoop Gupta, and John Hennessy. Addi- 
tional contributions to the hardware development 
were made by Kourosh Gharachorloo, Wolf- 
Dietrich Weber, Mark Horowitz, Tom Chanak, John 
Maneatis and Monica Lam. Help from Silicon 
Graphics, namely Jim Barton, Forest Baskett, John 
Burger, Doug Solomon and John Carlson, was also 
instrumental. Dan Lenoski was supported by Tan- 
dem Computers during his graduate work. John 
Toole and Gil Weigand at DARPA provided the 
funding to support the greater team and build the 
DASH prototype. 

For additional details on DASH see: 

[l] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. 
Stevens, A. Gupta, and J. Hennessy, “The DASH 
Prototype: Implementation and Performance.,” 
IEEE Trans. on Parallel and Distributed Systems, 
4(1)41-61, January 1993. 

[2] D. Lenoski and W.-D. Weber, Scalable Shared- 
Memory Multiprocessing, Morgan Kaufmann 
Publishers, San Francisco, CA 1995 

82 


