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Abstract. 
The Origin System from Silicon Graphics pushed the com- 
plesih limits of ASIC design lo levels previously only seen 
in ful l  custoni microprocessors. We describe the methodol- 
og? used to implement arid verfy th.is ccNUMA multipro- 
cessor system. A ,fomi.al spec@ccrtion, consisting of o 
detailed. machine reudcible descriptiori oj‘ the ccNlJMA 
cache coherence protocol was the corner storie used to 
maricige the complexity of the design. This speciJcatiori 
was formally verified and used to autonzate logic verifica- 
tion. We used a hierarchical approach at all levels to at- 
tack the design and ver@catioa. We made design decisions 
to ense verijication without compromising system perjor- 
tnatice. The completion of this system, running at speed, 
with no bugs in the cache coherence protocol, validates 
this methodology 

1 Introduction 
We describe the methodology that was used to implement 
and verify the Silicon Graphics Origin 2000, a cache-co- 
herent non-uniform access (ccNlJMA) multiprocessor sys- 
tem. The Origin 2000 directory-based shared memory 
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Figure 1 Origin block diagram 

machine 141 shown in Figure 1 consists of nodes of one or 
two processors, physical memory, directory memory, a 
nude controller Hub, IO Xbar interconnect. IO deviccs, 
and a scalable interconnect connecting 2-5 12 different 
nodes. The Hub chip is composed of a Crossbar (XB), 
Processor Interface (PI), Network Interfacc (NI), IO Inter- 
face (11) and a Memorymirectory controller (MD). 
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The single largest difference between previous generation 
SGI multiprocessor systems and the Origin 2000 is the 
ccNUMA architecture. Its cache coherency protocol is in- 
validation based, and together with the processor [61, sup- 
ports a sequentially consistent memory model [71. In order 
to be independent of a specific network topology, the pro- 
tocol does not rely on network ordering. This makes verifi- 
cation more difficult by an order of magnitude, as the 
number of corner cases goes up dramatically. For further 
detail on the cache coherence protocol, refer to [2,4]. 
Implemented in the Hub ASIC, the coherence protocol and 
support hardware represent the most complex system 
ASIC designed at Silicon Graphics to date. The design 
was realized in a five-metal layer, 900 thousand gate stan- 
dard cell chip running at 100 MHz. The physical design 
and timing methodologies stressed the limits of available 
tools. 
This paper concentrates on thc vcrification and physical 
design methodologies of the Hub ASIC. 
The paper is organized as follows. Section 2 describes the 
formal verification of the coherence protocol. Section 3 
describes the simulation methodology for unit and system 
verification. Section 4 discusses the physical design and 
timing methodologies. 

2 Formal specification analysis/verification 
The Origin 2000 system is highly distributed and supports 
10000’s of concurrent memory operations. The cache co- 
herence protocol is therefore inherently complex. It was 
therefore ol‘ crucial importance to formally analyze its cor- 
rectness. The formal analysis was extremely successful. It 
found numerous problems that would have been extremely 
difficult to find with conventional simulation techniques. 
This included a case where an 18 step sequence of mes- 
sages led to loss of cache coherency! 
We chose smv [31 to formally verify the protocol specifi- 
cations. There are several reasons for this choice (see [ 1,2] 
for more details). First, smy has been successfully used to 
verify the specifications of other cache coherence proto- 
cols. Another reason is that source code is available for the 
tool, in case any problems are encountered. Finally, we 
chose smv because it can be integrated with a conventional 
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prqject design flow; an important consideration from our 
industry perspective. 
We cmploy top-down methods to maximize the benefits of 
formal verification. An overview of the formal analysis 
workflow is shown in Figure 2. The input to the analysis is 
a cache coherence protocol specification. 

Figure 2 formal analysis workflow 

The smv model is derived from the design specification. 
Temporal abstraction is used to minimize the granularity 
of the time scale, and functional dependency analysis is 
used to eliminate as many state variables as possible. Fi- 
nally, we selectively refine the smv model, using the RTL 
implementation. We proceed in this fashion in order to in- 
crease the computational efficiency of model checking, 
and to avoid the state explosion problem [1,2]. 
A high-level protocol specification consists of a collection 
of state machine tables, that determine the response to in- 
coming messages in terms of state changes, outputs, and 
outgoing messages. The tables serve as input to a perfor- 
mance simulation, formal verification with smv, verilog 
RTL state machine generation, simulation table sweeps 
(see section 3.31, and the protocol document. 
During the early phases of the project. protocol design al- 
tertiatives were evaluated using a performance simulator. 
After performance evaluation trade-off simulations were 
completed, the protocol went through numerous revisions. 
The three primary driving forces behind the changes are 
the following: operating system (OS) requirements. RTL 
synthesis timing issues, and protocol problems. uncovered 
with the formal analysis. 
There was exactly one accurate, always up to date, ma- 
chine readable protocol specification. Having one source 
for the specification had several important benefits. The 
first was that the different tools were always working with 

the same version of the protocol. Another was that it was 
possible to verify any design changes, e.g. due to RTL tim- 
ing considerations, with the formal verification tool. Final- 
ly, once  formal verification found a problem in the 
protocol, and smv verified the proposed fix, the revised 
version of the protocol was immediately available to the 
RTL simulation tools. 
The goal was to verify the following properties of the 
high-level specifications: deadlock-free, all coherent read 
& write requests receive the correct response, there are 
never unsolicited responses, and no violation of the safety 
invariants. 
If for performance reasons the protocol was implemented 
with one-hot encoding, we also verified that there is al- 
ways at most one row activated in a table. It is also impor- 
tant to check the converse condition, i.e. that each row is 
activated for some state of the protocol. 
The following four types of safety properties are verified: 
expected state machine input conditions, protocol message 
invariants, protocol state invariants, and a special case of 
deadlock. 
A protocol message invariant, for example, is the property 
of the cache coherence protocol that a particular processor 
can only have at most one outstanding request targeting a 
particular cache line. 
A protocol state invariant, for example, is the property that 
if a particular processor has an exclusive cached copy of a 
cache line, then no other processor or the I/O merge cache 
can have a copy of the same cache line. 
The important result of the formal analysis is that no pro- 
tocol problems have been found since the formal analysis 
was completed. 

3 Implementation verification 
While formal verification played a crucial role in our veri- 
fication strategy, traditional simulation-based verification 
remained an essential activity. This section summarizes 
our simulation strategy and experiences. 
We intentionally designed the Hub chip so as to facilitate 
the verification effort, and we developed a simulation envi- 
ronment in which we could easily write and execute a very 
large number of tests. We ran simulations on individual 
modules within the Hub, as well as on more highly inte- 
grated configurations. The following subsections will 
elaborate on these themes. 

3.1 Unit verification 
Divide and conquer was the basic approach we took to 
verify the Hub chip. As the design neatly partitioned itself 
into five major units- PI, MD, NI, I1 and a centralized 
XBar (XB), which passes the messages between the units, 
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we formed our verification strategy based 011 the special 
characteristics of each unit. We created a strategy to verify 
each of the units through directed diagnostics and with au- 
tomated table sweep diags. Our goal was to find and fix all 
the unit level bugs before we moved full steam ahead on 
the full chip system simulation. 
3.1.1 Stubs 
To achieve our goal of finding bugs in the unit level, we 
developed several stubs to make the verification efforts ef- 
fective and semi-automatic, and so that we could generate 
some directed random diags easily. Some of the stubs we 
developed: 

0 For the processor interface, we wrote a RlOOOO sys- 
tem interface emulation stub which adheres to the 
SysAD protocol [6]. 

0 We created a stub to drive the Xbar side of each unit. 
Basically this stub, core vector generation (CVG), can 
generate any kind of SNO protocol messages to be 
destined to a specified unit. This stub also took advan- 
tage of the fact that each of the units interfaced to the 
Xbar using a set of input and output request and reply 
FIFOs in a very uniform way. We were able to replace 
the verilog model for any unit with this CVG stub to 
send any requests or replies to the unit(s) under test. 

0 The network interface needed a stub to drive the scal- 
able interconnect network. 
The IO Interface connects to the outside world using 
an X I 0  bus and so we wrote a stub to emulate the 
X I 0  protocol. 

All these stubs were written with higher level task calls, 
which can be called from the diags directly to make the 
diag writing simple, readable yet quite powerful. 
3.1.2 Directed diagnostics 
Most o f  the directed diags were written in verilog using 
these above stubs and are made to be self checking. The 
diags then were compiled into the model and so can be run 
at anytime using the runtime command line options. Since 
these diags were written in verilog they could take full ad- 
vantage of verilog coiistructs like wait, event and #delays 
etc. 
3.1.3 Table sweeps 
We needed to verify that each unit, treated as a black box, 
would correctly generate all proper transaction responses 
regardless of any interaction with othcr transactions. We 
realized that it would take an inordinate amount of verifi- 
cation effort to come up with directed diags to cover all the 
messages handled by each unit and the possible interac- 
tions of these messages. Also, the fact that the Hub chip 
implements cache coherency in hardware through a set of 
protocol tables built in each of the units led us to this new 

way of verifying these individual tables through a table 
driven method. 
Fonnal verification methods were used to verify the higher 
level specification of the protocol table in each of the units 
and so based on this we could derive a master verilog table 
to be compared against the tables implemented in hard- 
ware in each of the units. The master table specifies in de- 
tail what should be the expected state uansitions and the 
output messages, if any, for a given set of input conditions. 
So the first task of this program is to “walk” every line of 
the table by setting up initial states and then “hit” it with 
an input condition and check and make sure that the hard- 
ware implementation of the table behaves as expected. An- 
other purpose of this program is to “sweep” multiple 
transactions to hit various lines of the table and to verify 
that the unit behaves as specified in the master table in all 
conditions. 
The implementation of this idea was carried out differently 
for each of the units. The straight forward one being the 
MU, which only responds to requests coming from the 
Xbar side of the input queue. In contrast, the PI & I1 need- 
ed to service the requests coming from RlOOOO and X I 0  
devices respectively, in addition to the ones from their in- 
put Xbar queue. This introduced additional complexity, as 
these units needed some coherency request buffers (CRBs) 
built into them to keep track of the conflicting coherent 
traffic in these units. Some of the units gave back door ac- 
cess to setup the initial state of the CFU3 or Directory states 
and this was quite useful to achieve the objective to “walk’ 
and hit every line specified in the table. For those units 
which didn’t provide back door access the initial condi- 
tions were set up by using a set of sequences and testing 
for the expected state at each step of the sequences. For the 
PI, table sweep was carried out as a set of streams running 
in parallel with each of the streams consisting of a set of 
sequences. The number of streams which can run in paral- 
lel was limited by the number of outstanding reads sup- 
ported by the processor to the external agent. For the MD, 
it was carried out by sweeping all different types of re- 
quests against each single type of request. The scope of 
this was limited by the number of transactions which can 
be handled in parallel by MD. For 11, this was carried out 
as a set of directed diags running in parallel each targeting 
different sets of lines in the I1 protocol table, 
On the whole this table sweep verification proved to be 
quite successful as we could automate most of this using 
some sets of per1 scripts and also made it easier to run 
sweeps targeting different lines of the table by modifying 
some command line arguments. 

159 



3.1.4 Formal verification of unit sub-blocks 
As a part of unit verification, we also formally verified 
scvcral sub-blocks of units where we felt the directed diag- 
nostic coverage was not sufficient. This included some x- 
biters, fifos and credit si7.e management FSMs. 

3.2 Diagnostic environment 
We wrote our directed tests for the I1 module in a high-lev- 
el language which we specified and implemented. 
Other options we considered were to write our tests direct- 
ly in  Verilog or in some language similar to Verilog for 
which a convenient macro expansion tool already existed; 
cither way, we would generate Verilog code for compila- 
tion with the Ii'Il.. 
The high-level language provided several advantages over 
the other options: 
e Ease of writing and maintaining tests. The syntax and 

semantics were more closely aligned to the conceptu- 
al level at which we wished to express our tests. 

e Portability. The same source code could be executed 
in two different ways: compilation or interpretation. 

Our language is intended to test RTL whose functionality 
can be described in terms of packets sent to or received 
from it. The language provides various flavors of two basic 
commands: *-inject and *?expect. These commands are 
used to send packets to and receive packets from the RTL, 
respectively. The * is replaced by specification of a partic- 
ular stub in the configuration. For each *-inject or 
* - expect command, the user must specify the contents of 
the fields of the packet; the definition of what fields com- 
prise a packet depends on the particular stub to which the 
command applies. 
To allow for concurrency amongst events, thc language 
supports optional "NAME" and "AFTER' directives 
which can be specified with commands. The NAME direc- 
tive attaches a specific name to a particular command. If a 
command has an AFTER directive specified for it, then 
this directive indicates the commands whose completion 
must precede the execution of the command: these prereq- 
uisite commands are denoted by listing their names. 
The following example illustrates our language: 

xt-inject name=xt-iw 1 { 

... otherjield values ... 
ADDR=0~3D-0004-0000; DATA=Ox3-0004; } : 

TNIJM=6: TYPE=WR-RQWRF': SI%E=DW; 

xt-expect name=xt-ew 1 { 
TNIJM=6: TYPE=WR-RSP; SI%E=DW; 
... otherfield values ... ); 

xt-inject name=xt_iw2 after [xt-iwl] { 
?"1JM=7; TYPE=WR-RQWRP: SIZE=DW; 
... other$eld value5 ... 
.4DDR=0~3D_0004-00A8; DATA=Ox3-D005; } ; 

xt-expect name=xt_ew2 { 

... otherjield values }; 
TNUM=7 ; TYPE=WR-RSP; SIZE=DW; 

finish after [xt-ewl, xt~ew21; 

Figure 3 Test written in diagnostic language 

In this example, the xt-inject command named xt-iw2 can 
execute immediately after xt-iw 1 has completed; it need 
not wait for the xt-expect command named xt-ew 1 to oc- 
cur first. These xt-iwl and xt-iw2 commands both submit 
X I 0  write requests to the 11 RTL,. The xt-expect com- 
mands named xt-ew1 and xt-ew2 specify the respective 
responses expected for these requests. The test doesn't fin- 
ish until both xt-ew 1 and x t ~ e w 2  have happened. 
Originally, we wrote a tool which converted our tests from 
their high-level language representation into Verilog suit- 
able for compilation with the ASIC RTL. However, we lat- 
er decided to discontinue this approach. Instead of 
compilation, we opted for interpretation at run-time. We 
wrote some C routines that parse and execute our tests, 
and we used the Verilog PLI to connect our C code to the 
underlying Verilog simulation model. The advantages of 
interpreting tests at run-timc rather than compiling them 
with the RTL are as follows: 

0 Faster VCS [l  11 compilation time (less code to com- 

e Smaller simulation binary executable. 
0 Quicker development for tests (faster iteration time). 
0 Ability to run very many tests (sweeps, randoms). 

The Hub chip connects to several important communica- 
tion channels. For example, the RlOOOO processors com- 
municate with the Hub via the SysAD bus. Likewise, the 
Huh and its IO devices communicate via the X I 0  link. We 
wrote monitors which continuously watch traffic on the 
SysAD bus and X I 0  link. If a monitor detects a protocol 
violation (e.g., a flow control error), it will report the error. 
These monitors helped us to quickly discover inter-chip 
communication errors, and provided valuable guidance 
about the source of these errors. 
To gain some insight into traffic patterns during execution 
of a test, we wrote a tool which generates traces. This tool 
prints a listing of all packets which travel through the Xbar 
module. It writes its output to a file in ASCII format which 

pile). 
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we can later analyze. When bugs occurred, these traces 
provided valuable information about activity in the system 
prior to the time of failure. We also generated complete 
signal dump files (VCD files) and examined activity on all 
signals using the signalscan [8] tool. The VCD files were 
much larger than the Xbar traffic traces and generally cov- 
ered much shorter time intervals. 

3.3 System simulation 
The directed and table sweep diags provided the founda- 
tion of the functional verification of the Hub, but as we 
were replacing RTL units with CVG’s in a lot of these en- 
vironments, there was the need to do full chip simulation 
to make sure the units would inter-operate correctly. We 
also wanted to make sure the Hub chip could correctly 
work in a system of multiple Hub chips and router chips. 
A single node system simulation consisted of a Hub chip. 
with the processor interface connected to 2 RlOOOO MIPS 
processors, the memory interface having RAVICAD 
SURAM models connected, and the IO interface having a 
X I 0  stub connected. The RlOOOO MIPS processors were 
complete RTL models but were executed as separate co- 
simulation processes as they run in a proprietary simula- 
tion language to MIPS technologies. We used a socket 
based co-simulation package that had been used on previ- 
ous generations of systems at SGI. 
Stimulus to the system was provided in a number of ways. 
Firstly, we would compile programs (C or assembly) and 
then load the object files into the SDRAMS and then have 
the RIO000 MIPS processors come out of reset and start 
executing this code (a condensed boot setup and state ini- 
t i a l i d o n  was used rather than executing the software re- 
quired in a real system). A single node would simulate at 6 
cycle/second. These programs would stress the cache co- 
herency by performing operations to cause transaction pat- 
terns such as massive false sharing of cache lines, or true 
sharing. The second stimulus was from the X I 0  stub 
which could st‘art up random DMA sequences to the 
SIIRAM mcmory connected to the Hub. The X I 0  stub se- 
quences would be self checking, writing and then reading 
back that data (varying the address, size and data pattern 
etc.). The processors would also stress the X I 0  stub with 
PI0  reads and writes. as well as graphics writcs (these 
could be block (16 doublewords) writes, or word writes). 
Finally. the IO section of the Hub also has a block transfer 
engine (BTE) for moving large amounts of data around in 
the system (between memory in one node, or from one 
node’s memory to another). The BTE could be set running 

by the R IO000 processors doing P I 0  writes to control reg- 
isters in the Hub. 
Once the single node system model was stable, the obvi- 
ous thing was to run 2 nodes with the NI’s directly con- 
nected - this allowed us to have 4 processors sharing data 
covering more arcs in the cache coherency protocol tables. 
Obviously with the Hub being a large chip, running 2 full 
nodes together would slow things down. We took advan- 
tage of the co-simulation package we had developed at 
SGI that was originally intended for use connecting to- 
gether models running in different simulation languages 
and retargeted it so we could partition the verilog model 
and have each node simulation running as a separate pro- 
cess. The nodes communicated via UNIX sockets with the 
Hub’s NI sending and receiving data via the sockets. With 
the current SMP machines that SGI manufactures, we 
were able to get good scaling of performance by using the 
multiple processors provided in the system. 
The next step was to run more and more nodes, stepping 
up the node count each time we seemed to plateau the bugs 
found with the current system size. To manage the com- 
plexity of connecting up these large system configurations 
we used perl to read a configuration file that specified how 
many nodes and routers were in a system and how they 
were connected. The perl code would then generate the top 
level verilog modules and co-simulation interface code re- 
quired to run the large system models. This turned out to 
be very flexible and maintainable as we increased the com- 
plexity of how we were building and controlling the mod- 
els. 
The Spider router 191 used in the Origin system is a 6 port- 
ed router. So for building systems with more than 6 nodes, 
we would need more than 1 router model. We found that 
the router RTL model was actually simulating slower than 
the Hub RTL model as it had a lot of gates directly instan- 
tiated in the RTL to meet timing requirements. In order to 
avoid this bottleneck, we built a virtual router that was ac- 
tually a piece of PLI code that would take messages from 
any number of nodes and place them in queues at the desti- 
nation node. This let us remove the router from the large 
system simulations and get us back to being restricted on 
simulation speed by the Nub chip. 
The largest system simulation we ran was a 16 node simu- 
lation. This simulation actually consisted of 49 UNIX pro- 
cesses that were running together on a 32 processor SGI 
Challenge server. These were 16 verilog processes for the 
nodes, 32 processes for the 32 RIO000 MIPS processors, 
and a single parent verilog process that contained the PLI 
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virtual routcr for routing data between the nodes. We actu- 
ally found a bug with this system model! 

3.4 Computer resources 
We used a cvrripuie fami made up of SGI Challenge 
R4400 200/250MHz servers, supplying a total of over 100 
CPUs. In order to make use of this compute resource, we 
used the LSF queueing tu01 from Platform Computing 
[lOl. 

3.5 
Despite our intense efforts to thoroughly verify the Hub 
using foinial methods and simulation. a handful of subtle 
bugs escaped detection until we ran tests on chips in the 
lab. However, we never found any bug in the formally ver- 
ified cache coherence protocol. 
Of the few bugs found in silicon, the ones that forced us to 
revise the silicon occurred when there were a lot of inde- 
pendent conditions lined up to create a situation that 
caused the chip to function incorrectly. These cases in- 
volved hard to setup cases in simulation, where lots of 
state had to build up, with exact back-pressure situations, 
and precise timings of events. These cases may be best 
handled by a more formal approach as there are just not 
enough simulation cycles available to build up all the state 
required to hit the bug (even when the bugs were known. it 
was hard to replicatc thcm in simulation). Wc did use for- 
mal verification successfully to help track down problems 
in the RTL that showed up in the lab. 

Bugs discovered in the lab 

4 Physical design methodology goals 

ple: 
Our goals for timing, floorplanning and layout were sim- 

0 provide quick feedback between design and layout 
0 accurately predict critical paths 
0 gain early confidence in feasibility of design 

While our tool vendors stressed that “deep submicron ef- 
fects” would require a vastly different design flow, we 
didn’t find that to be true. Instead, we found that data man- 
agement is one of the largest problems in designing big 
chips. 

4.1 Tool flow 
Our timing/physical design methodology relied on com- 
mercial tools for logic synthesis (Synopsys), floorplanning 
(HLD Systems), and timing (SynopsysEinstimer). Recog- 
nizing early that we’d be stressing all of the tools in new 
ways, we had 4-way meetings between these vendors and 
our ASIC vendor, IBM. We wanted to ensure that these 
tools could handle very large designs cooperatively. We 
were able to agree on a methodology iiicluding Links to 

Layout, Standard Delay Format (SDF) back-annotation, 
Physical Design Exchange Format (PDEF), and In-Place 
Optimization. The multi-hour processing times required 
by that methodology proved to be too much of a bottle- 
neck. That led us to develop a streamlined methodology 
using partial SDF, simple Wire-Load Models (WLM) and 
lots of per1 scripts. 
For the first time in SGI’s history, we were able to base our 
sign-off methodology on static timing analysis. We found 
it difficult to agree with IBM about which WLMs to use 
for the timing analysis. Our inclination was to usc the most 
accurate ones available, while IBM wanted us to use pessi- 
mistic ones. In the end, we agreed to use area-based 
WLMs sized according to floorplan estimates. 

4.2 Timing and synthesis 
Very early in the design phasc wc dccidcd to takc a hierar- 
chical approach to timing. We partitioned the logic into 
about 20 chiplets with between 20-100 thousand gates. 
The chiplets became our floorplanning blocks. We also 
recognized that we needed speciftc timing methodologies 
for intra-chiplet aiid inter-chiplet nets. 
Thc 8224 inter-chiplet nets wcrc treated individually as 
early as possiblc in thc design. 

0 Timing budget was negotiated and tracked, including 
time-of-flight across the large die 

0 Wherever possible, outputs were launched out of the 
chiplet from a register 

0 Special WLM was generated for the static timing 
analysis tools, replacing whole-chip vendor-supplied 
WLM. This was used before floorplanning, the only 
time statistics were applied to inter-chiplet nets. 

0 Tool was written to estimate individual wire lengths 
based on center-to-center distance between source and 
destination chiplets. This was useful as a quick check 
011 the floorplan. 

0 Finally, when ports had been assigned in floorplan- 
iiing, we extracted SDF for inter-chiplet nets. 

The biggest methodology flaw was using the IBM area- 
based WLMs in combination with Synopsys’ auto-sizing 
library. 
Intra-chiplet nets. on the other hand, were treated statisti- 
cally all the way through sign-off. 

0 Initially we used IBM-supplied area-based WLMs. 
0 Next, we used the floorplanner to generate custom 

WLMs for each chiplet. This WLM was applied top- 
down to cach synthcsis run inside that chiplet. 

Designers used Synopsys for all of the logic under their 
control. We had a dedicated chip integration person do 
full-chip timing using Einstimcr. 
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4.2.1 Synthesis problems 

Our large-chip effort exposed three general problems with 
the synthesis tool, all related to the quality of results. 

0 We found it difficult to determine and manage the 
constraints on the I/Os of the leaf-level modules. It’s 
unfortunate that there aren’t any commercial tools to 
help maintain constraints and timing budgets. 

0 Synopsys had a difficult time trading off gate sizing 
and load balancing with IBM’s wide variety of drive 
strengths. Designers were dismayed to find unneces- 
sary back-to-back inverters on their critical paths. 

0 Synopsys’ post-layout optimizations didn’t work. We 
ended up writing some simple per1 scripts to resize 
gates after layout. 

Together, these problems led to the overriding problem: 
excessive hand-instantiation. Under pressure to meet ag- 
gressive tapeout schedules, our designers were forced to 
work around many of these problems by manually design- 
ing the logic for timing-critical sections of the chip. The 
Hub chip was about 30 percent hand-instantiated. 
While we did eventually reach our target cycle time, the 
hand instantiation was time-consuming, hard to get right 
and slowed down the simulator. 

4.2.2 Timing problems 

In a new flow, it’s important to spend time measuring and 
improving the correlation between the tools’ timing esti- 
mates. Early Origin 2000 studies showed gross errors be- 
tween Synopsys’ and IBM Einstimer’s timing of high- 
resistance nets. The errors, in one case as bad as lox, were 
due to limitations in Synopsys’ delay calculator. 
Since we were unable to get enhancements for the delay 
calculator problem in the time frame of the project, we 
agreed to avoid the problem altogether. We limited fanout 
of inter-chiplet nets to four and intra-chiplet to sixteen. 

4.3 Floorplanning 
Floorplanning provided the crucial link between synthesis 
and layout. However, we thrashed a lot before we achieved 
enough accuracy to feel comfortable with the link. 

4.3.1 Floorplanning calibration 

We needed accurate, quick links in two directions. First, 
feedback to design needed to be well-correlated with lay- 
out but not pessimistic. Second, feed-forward to layout 
tools had to ensure the correlation. 
Pessimistic feedback was immediately rejected by the de- 
signers. While it’s easy to reduce layout iterations by mak- 
ing draconian WLMs, that forces designers to have to 

work too hard to make timing. It also leaves performance 
on the table. Optimistic feedback, on the other hand, could 
easily result in far too many layout iterations. Designers 
would tape out an unrealizable chip, and surprises would 
crop up during physical design. 
In the end, we calibrated the HLD/Synopsys feedback path 
by examining the results of several trial layouts. Path for 
path, we compared the Synopsys, HLD and layout-derived 
timing. That allowed us to identify and eliminate the larg- 
est discrepancies. 
We achieved the best correlation by allowing HLD to au- 
toplace the drivers and receivers of inter-chiplet nets, then 
feeding those choices to the layout tools. By constraining 
the layout tools to use these placements, we made sure that 
inter-chiplet nets wouldn’t offer any surprises. 
We further improved the correlation by preplacing the 
components of the most important datapaths. This had the 
attractive side benefit of improving routability and com- 
pactness. Most importantly, though, it improved the pre- 
dictability of the physical design process. 

4.3.2 Logical vs. physical hierarchy 

One of the difficult project decisions was how to structure 
the hierarchy in physical design. Since we were already 
overburdened with inventing new flows, we decided to 
take the safe route. We decided that the logical and physi- 
cal hierarchies would be almost the same. 
We felt nervous with our vendors’ assurances that PDEF 
would allow us to bridge disparate hierarchies. We also 
wanted to achieve quickest possible turnaround between 
synthesis and floorplanning. 
Keeping logical and physical hierarchies the same meant 
that we didn’t need PDEF in the flow. That kept the turn- 
around time as short as possible. It also made it easier for 
the logic designer to debug problems stemming from the 
physical domain. 
One unforeseen problem in the link between HLD and 
Synopsys involved the SDF for inter-chiplet nets. SDF 
stores interconnect information as point-to-point delays 
between instance pins. When you read SDF into your tim- 
ing tool, it attaches the delay to all the pins. Unfortunately, 
we often found that, because of the lengthy loop through 
floorplanning, the logical design had changed and no long- 
er corresponded with the SDE Even though the point-to- 
point connections were the same, resynthesizing the 
blocks invariably changed the instance names. That meant 
the SDF sometimes was unable to attach delays to now- 
missing instances, and sometimes the delay was attached 
to the wrong instance. 
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This is but one example of the difficult data management 
problems we faced 011 the Origin project. We constantly 
struggled with data consistency between logical and phys- 
ical design. We created disruption in the design verifica- 
tion environment by asking designers to check in updates 
for physical design before they could be logically verified. 
That broke the “top of trunk” design which a lot of design 
verification people were trying to simulate. Towards the 
crid of the project wc gained control over these issues by 
mandating well-publicized snapshots of the netlists. 

5 Conclusions 
The Origin 2000 Hub chip is the largest and most compli- 
cated ASIC ever designed at SGI. To successfully and effi- 
ciently accomplish the verification and physical design 
tasks, we applied the following innovative techniques: 

0 Formal verification of the cache coherence protocol 

0 Table-driven verification of individual modules. 
0 Module designs which facilitate verification. 
0 Interpretive simulator interface for running tests. 
e Chip designs which facilitate physical design (i.e.. 

recognition of the physical effects of logic design). 
0 Hierarchical ASIC design methodology. 

and portions of the Verilog R’I’L. 
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